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GA a simulation by hand

For a function f (x) = x2 where x ∈ [0,31] a population of 4 strings.
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GA a simulation by hand

Reproduction, and Crossover with no mutation.

The population average fitness improved from 239 to 439.

The maximum fitness also improved from 576 to 729
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Similarity schema

Similarity Schema

What information is contained in this population to guide directed search
for improvement? (i.e., causal relation similarity/fitness)

Strings starts with 1 on the left seems to be better.

Similar strings fall under the same schema (i.e., similarity template)

Study of schemata proves the power of GA.
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Similarity schema

Similarity Schema

The Power of Building Blocks
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Similarity schema

Similarity templates (Schemeta)

Schema - Holland (1975)

Schema is a template that identifies a subset of strings with similarities at
certain string positions.

E.g.

0*1100*

Note

We can think of it as a pattern matching device: a schema matches a
particular string if at every location in the schema a 1 matches a 1 in the
string, or a 0 matches a 0, or a * matches either.

E.g. For a binary alphabet {0, 1}, we motivate a schema by appending a
special symbol *, or dont care symbol, producing a ternary alphabet {0,
1, *} that allows us to build schemata.
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Similarity schema

Notation: String, Population

Consider strings to be constructed over the binary alphabet

V={0, 1}
Strings as capital letters

Individual characters by lowercase letters subscripted by their
position.

Example

A = 0111000 may be represented symbolically as:
A = a1a2a3a4a5a6a7

Example

ai represents a gene (binary feature or detector)
ai value represents an allele
A(t)represents a population of strings at time (or generation) t
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Similarity schema

Notation: Schema

Consider a schema H taken from the three-letter alphabet:

V={ 0, 1, * };

* asterisk is a dont care symbol which matches either a 0 or a 1 at a
particular position.
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Similarity schema

Schema Matching

A bit string matches a particular schemata if that bit string can be
constructed from the schemata by replacing the ”*” symbol with the
appropriate bit value.

Example

H = *11*0**
String A = 0111000

String A is an example of the schema H because the string alleles ai match
schema positions hi at the fixed positions 2, 3 and 5.

February 10, 2021 11 / 54



Schema Properties

Outline

1 Similarity schema

2 Schema Properties

3 Growth and Decay of Schemata

4 How GA process schemeta

5 Two Armed and K-Armed Bandit Problem

6 How many schema are processed usefully?

7 Search Spaces as Hypercubes

February 10, 2021 12 / 54



Schema Properties

Schema Properties

Defining Length of Schema

δ(H) is the distance between the first and last fixed string position

Ex.

H = 011 ∗ 1 ∗ ∗
δ(H) = 5 − 1 = 4

Order of Schema:

o(H) is the number of fixed positions present in the template

H = 0 ∗ ∗ ∗ ∗ ∗ ∗
δ(H) = 0 because there is only one fixed position

o(H) = 1
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Schema Properties

Schema Properties

Note

Schemata and their properties serve as notational devices for rigorously
discussing and classifying string similarities.

Note

They provide the basic means for analyzing the
net effect of reproduction and genetic operators on the building
blocks contained within the population.
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Schema Properties

Schema Counting

How many possible schemata for binary string population of length (` = 5)

Each character can be from {0, 1, *}
Thus, we have 3 × 3 × 3 × 3 × 3 = 35 = 243 possible schemata

Alphabet of cardinality k has (k + 1)` possible schemata
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Schema Properties

Schema Counting

Consider the binary string 10, how many schemata cover this string?

{**,*0,1*,10}

For string s of length `, 2` schemata cover s.

A population of size n may contains somewhere between 2` to n × 2`

possible schemata (over estimate).

Not all this large numbers of schemata are explored due to the
destructive effect of cross over and mutation.

What we will proof is that a population of size n explore at least
O(n3) schemeta.

How many schemata are usefully processed?
(is there a lower bound linked to the population size n)?

Holland o(n3).
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Growth and Decay of Schemata
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Growth and Decay of Schemata

Effect of Reproduction on Schemata

Suppose at time t, there are m examples of a particular schema H in pop-
ulation A(t)

m = m(H, t)

During reproduction, a string Ai gets copied according to its fitness with
probability pi = fi

∑ fi

m(H, t + 1) = m(H, t) × n × f (H)

∑ fi

f(H) is the average fitness of the strings representing schema H at time
t.
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Growth and Decay of Schemata

Effect of Reproduction on Schemata

we may write the reproductive schema growth equation as:

m(H, t + 1) = m(H, t) × n × f (H)

∑ fi

Simplification

If we recognize that the average fitness of the entire population as
f = ∑ fi

n

we may express the reproductive schema growth equation as:

m(H, t + 1) = m(H, t) × f (H)

f
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Growth and Decay of Schemata

Effect of Reproduction on Schemata

Reproductive schema growth equation:

m(H, t + 1) = m(H, t) × f (H)

f

A particular schema grows as the ratio of the average fitness of the
schema to the average fitness of the population

Schemata with fitness values above the population average will
receive an increasing number of samples in the next generation.

Schemata with fitness values below the population average will
receive a decreasing number of samples.

All the schemata in a population grow or decay according to their
schema averages under the operation of reproduction alone.
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Growth and Decay of Schemata

Reproductive schema growth equation:

m(H, t + 1) = m(H, t) × f (H)

f

Suppose we assume that a particular schema H remains above average an

amount c .f with a c constant. Under this assumption, we can write:

m(H, t + 1) = m(H, t) × f +cf
f

= m(H, t) × (1 + c)

Starting at t=0, and assuming a stationary value of c, we obtain the equa-
tion:

m(H, t + 1) = m(H,0) × (1 + c)t

Note

Reproduction allocates exponentially increasing (decreasing) numbers of
trials to above (below) average schema.
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Growth and Decay of Schemata

Quantitave Effect of Reproduction on Schemata

m(H, t + 1) = m(H,0) × (1 + c)t

Reproduction can allocate exponentially increasing and decreasing
numbers of schemata to future generations in parallel.

Many different schemata are sampled in parallel according to the
same rule through the use of n simple reproduction operations.

However, reproduction does not promote exploration of new
regions of the search space.

This is where crossover steps in
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Growth and Decay of Schemata

Effect of Crossover on Schemata

Consider a particular string of length ` = 7 and two representative schemata
within that string:

A = 0111000
H1 = ∗1 ∗ ∗ ∗ ∗0
H2 = ∗ ∗ ∗10 ∗ ∗

Recall: Crossover Operation

crossover proceeds with the random selection of a mate;

Random selection of a crossover site

The exchange of substrings from the beginning of the string to the
crossover site inclusively with the corresponding substring of the
chosen mate.
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Growth and Decay of Schemata

Effect of Crossover on Schemata

Assuming that we have the following randomly chosen crossover site: 3

A = 011∣1000
H1 = ∗1 ∗ ∣ ∗ ∗ ∗ 0
H2 = ∗ ∗ ∗∣10 ∗ ∗

H1 is destroyed. Defining length = 5

H2 will survive. Defining length = 1

Note

H1 is less likely to survive crossover than schema H2 because on average
the crossover site is more likely to fall between the extreme fixed positions.
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Growth and Decay of Schemata

Lower Bound on Crossover Survival Probability

A = 011∣1000
H1 = ∗1 ∗ ∣ ∗ ∗ ∗ 0
H2 = ∗ ∗ ∗∣10 ∗ ∗

pd(H1) = δ(H1)

`−1 = 5
6

pd(H2) = δ(H2)

`−1 = 1
6

ps(H1) = 1 − pd(H1) = 1
6

ps(H2) = 1 − pd(H2) = 5
6

To generalize, a schema survives when the cross over site falls outside the
defining length. The survival probability under simple crossover is ps(H)

ps(H) = 1 − δ(H)
`−1
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Growth and Decay of Schemata

Lower Bound on Crossover Survival Probability

If we consider the probability of performing a crossover operation to be pc

ps(H) = 1 − pc ( δ(H)`−1 )

Independence is assumed between the two event (crossover and
schemata destruction)
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Growth and Decay of Schemata

Combined Effect of Reproduction and Crossover

Assuming independence of the reproduction and crossover operations.

m(H, t + 1) = m(H,0) × (1 + c)t × [1 − pc ( δ(H)`−1 )]

Schema H grows or decays depending upon a multiplication factor.

That factor depends on 2 things:

whether the schema is above or below the population average

whether the schema has relatively short or long defining length

Note

Clearly, those schemata with both above-average observed performance
and short defining lengths are going to be sampled at exponentially
increasing rates.
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Growth and Decay of Schemata

Effect of Mutation

Mutation is the random alteration of a single position with probability pm

In order for a schema H to survive, all of the specified positions must
themselves survive.

A single allele survives with a probability (1 − pm)
Since each of the mutations is statistically independent, a particular schema
H survives when each of the o(H) fixed positions within the schema survives

The survival probability is multiplied by itself o(H) times:

(1 − pm)o(H)

For small values of pm (pm << 1), we can write:

(1 − o(H)pm)
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Growth and Decay of Schemata

Fundamental Theorem of Genetic Algorithms

m(H, t + 1) ≥ m(H, t) × f (H)

f
× [1 − pc ( δ(H)`−1 ) − o(H)pm]

m(H, t + 1) Expected Count of Schema H at time (t+1)

m(H, t) Expected Count of Schema H at time (t)
f (H)

f
ratio of schema fitness to the total fitness

[1 − pc ( δ(H)`−1 ) − o(H)pm] Survival probability

Who shall live and who shall die?

Short, low-order, above-average schemata are given exponentially
increasing trials in subsequent generations (building blocks)

February 10, 2021 29 / 54



How GA process schemeta
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How GA process schemeta

Schema processing by hand

Let us observe how the GA processes schemata not individual
strings-within the population

Let us consider three particular schemata, H1, H2 and H3 Where

H1 = 1****

H2 = *10**

H3 = 1***0

Observe the effect of reproduction, crossover, and mutation.
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How GA process schemeta

Hand Calculations
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Two Armed and K-Armed Bandit Problem
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Two Armed and K-Armed Bandit Problem

Two Armed Bandit Problem

Suppose a two armed slot
machine where one arm pays a
reward µ1 and variance σ1 and
the other arm pays µ2 and
variance σ2.

where µ1 ≥ µ2 Which arm
should we play?
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Two Armed and K-Armed Bandit Problem

Two Armed Bandit Problem

We can give each arm a try or some trials then play with the arm that
pay more.

This is known as a trade-off between the exploration for knowledge
and the exploitation of that knowledge.

Suppose we have a total of N trials to allocate among the two arms.
We first allocate an equal number of trials n (2n ≤ N) trials to each
of the two arms.
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Two Armed and K-Armed Bandit Problem

Two Armed Bandit Problem

we can calculate the expected loss:

L(N,n) = ∣µ1 − µ2∣. [(N − n)q + n(1 − q)]
Where q ≈ 1

√

2.π
e−x

2/2
x and x = µ1−µ2

√

σ2
1+σ

2
2

.
√
n

two sources of loss are associated with the procedure.

The first loss is a result of issuing n trials to the wrong arm during
the experiment.

The second is a result of choosing the arm associated with the lower
payoff even after performing the experiment.

if N, µ1, µ2, σ1, σ2 are known, how to get optimal n∗
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Two Armed and K-Armed Bandit Problem

Holland (1975) has performed calculations that show how trials should be
allocated between the two arms to minimize expected losses.

n∗ ≈ b2ln [ N2

8πb4lnN2 ]

N ≈
√

8πb4lnN2en∗/2b
2

We should give slightly more than exponentially increasing trials to the
observed best arm. The same conclusion apply to the k-armed bandit.
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GA and K-Armed Bandit Problem

In the usual GA we consider the simultaneous solution of many
multi-armed bandits.

if we consider a set of competing schemata as a particular k-armed
bandit.

Two schemata A and B are competing if they have the same *
positions and the same fixed positions.

E.x.

There are eight = 23 competing schemata
over the three positions 2, 3, and 5
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Two Armed and K-Armed Bandit Problem

GA and K-Armed Bandit Problem

Competing schemata

Since these schemata are defined over the same positions, they
compete with one another for precious population slots.

Each schema will grow or decay exponentially based on its average
fitness.

The difference here we assumed only 8 schemata over three positions
(i.e., 8-arm bandit)

In GA we have a number of problems proceeding in parallel
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Two Armed and K-Armed Bandit Problem

GA and K-Armed Bandit Problem

with three positions fixed over a string of length 7 there are

C(7,3)= 35, 8-arm bandit

with j positions fixed over a string of length ` there are

C(`,j), 2j -arm bandit

Total number of problems processed in parallel a.k.a implicit
parallelism

∑j C(`, j) = 2`

Not all problems are played equally due to the destructive effect of
crossover and mutation
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How many schema are processed usefully?

How many schema are processed usefully?

Consider a population of n binary strings of length `.

Probability of given schema survival should be greater than certain
threshold ε

As a result, assuming the operation of simple crossover and small
mutation rate we consider only those schemata with error rate less
than ε

pc ( δ(H)`−1 −O(H)pm) ≤ ε
δ(H) ⪅ ε(` − 1)

Holland suggested with a particular defining length, we can estimate a
lower bound on the number of unique schemata processed by an
initially random population of strings.
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How many schema are processed usefully?

How many schema are processed usefully? O(n3) proof

Lets start by counting the number of schemata of defining length
δ(H) that cover a single string in the population.

e.g. ` = 10 and δ(H) = 4

Schemeta count in a single window of size δ(H)
2δ(H)−1

Schemeta count for a string of length `

2δ(H)−1.(` − δ(H) + 1)
For the entire population of size n we have

ns = n.2δ(H)−1.(` − δ(H) + 1)
Holland assumed initial population size n = 2δ(H)/2 or n2 = 2δ(H), then

ns = n3. `−δ(H)+12 = O(n3)
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How many schema are processed usefully?

Criticize on Holland n3 argument

The estimate for ns depends upon a particular choice of population
size and any deviation in population size invalidates the derivation.

Increase in population size decreases the exponent, thereby decreasing
the apparent leverage.
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How many schema are processed usefully?

Better Approximate

Probabilistic estimate developed by Goldberg in 1985

Consider a schema of order j in a population of size n, where
(pone = pzero = 1

2)

p(single match on order j schema) = (1
2
)j

The chance of having all population failure on this order j schema

p(all failed matches of order j schema on population os size m) = [1 − (1
2
)j]

m

The probability of one or more successes is then given by

p(at least one order j success in size m population) = 1 − [1 − (1
2
)j]

m
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How many schema are processed usefully?

New Estimate

There are C(`, j) different ways to select the j positions in a string of
length `. Moreover, j fixed positions there are 2j different schemata
(a 0 or 1 at any of the j positions) thus expect to have the following
number of schemata with one or more representatives in a population
of size m:

(`
j
)2j [1 − [1 − (1

2
)j]

m
]

To get the total number of such schemata we simply sum over the
order from 1 to the string length `:

∑j=`
j=1 (

`
j
)2j [1 − [1 − (1

2
)j]

m
]

No closed form formula or asyeptotic relation has been discovered for
this expression
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New Estimate
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Search Spaces as Hypercubes

Hyperplane

Hyperplane

A hyperplane is a concept in geometry. It is a generalization of the
concept of a plane.

In 1-D space (such as a line), a hyperplane is a point; it divides a line
into two rays.

In 2-D space (such as the xy plane), a hyperplane is a line; it divides
the plane into two half-planes.

In 3-D space a hyperplane is an ordinary plane; it divides the space
into two half-spaces.

This concept can also be applied to four-dimensional space and
beyond, where the dividing object is simply referred to as a hyperplane
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Search Spaces as Hypercubes

Visualization of Schemata as Hyperplanes in 3-D Space

We can think of a GA cutting across different hyperplanes to search for
improved performance.
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Search Spaces as Hypercubes

Schemeta as Hyperplane

All adjacent corners are labeled by bit strings that differ by exactly 1bit
This creates an assignment to the points in hyperspace that gives the proper
adjacency in the space between strings that are 1 bit different.

inner cube: corresponds to 1***

outer cube corresponds to 0***

fronts of both cubes: *0**

front of the inner cube: order-2
hyperplane 10**
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